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Section 1. Properties of Differentiation

We’ve encountered derivatives so far, but let’s investigate differentiation, meaning the map between (differentiable)
functions and their derivatives. By knowing more about differentiation, we can break down complicated functions into
simpler parts, and from there evaluate the derivatives of the simpler parts. In particular, since limits work well with
addition, we have

1 • 1. Result
Let f and g be two functions differentiable at x. erefore .f C g/0.x/ D f 0.x/ C g0.x/.

Proof .:.
For f and g to be differentiable at x, we must have convergence of the following limits to finite numbers:

lim
h!0

f .x C h/ � f .x/

h
and lim

h!0

g.x C h/ � g.x/

h
.

By the definition of the derivative, and since both converge to finite numbers,

.f C g/0.x/ D lim
h!0

f .x C h/ C g.x C h/ � f .x/ � g.x/

h

D lim
h!0

�
f .x C h/ � f .x/

h
C

g.x C h/ � g.x/

h

�
D lim

h!0

�
f .x C h/ � f .x/

h

�
C lim

h!0

�
g.x C h/ � g.x/

h

�
D f 0.x/ C g0.x/ a

is is the simplest property of differentiation to prove: it distributes over addtion d
dx

.f C g/ D
d

dx
f C

d
dx

g. We
also have more complicated properties with more complicated proofs. But the nice thing about these properties is
that they allow us to break down almost any function that was built up with sines, cosines, exponentials, logarithms,
polynomials, and of course multiplication, division, and addition.

1 • 2. Result (Differentiation Rules)

Let f and g be two functions differentiable at x, and let c be a constant. erefore,
• (scalar multiplication) .c � f /0.x/ D c � f 0.x/.
• ( e product rule) .f � g/0.x/ D f 0.x/ � g.x/ C f .x/ � g0.x/.
• ( e chain rule) .f ıg/0.x/ D f 0.g.x// �g0.x/, where f ıg is the function defined by f ıg.x/ D f .g.x//.
• ( e power rule) d

dx
xn D nxn�1 for any n (e.g. n D 1=2, or n D � , or n D 4, or n D

p
5, and so on).

From this, we get the so-called “quotient rule”. Honestly, this rule doesn’t need to exist, but many sources list is as
important, and not just a redundancy. Inmany cases, using the quotient rule canmake things less simplified. Regardless,
it’s a part of the curriculum.
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1 • 3. Corollary (The Quotient Rule)

Let f and g be two functions differentiable at x such that g.x/ ¤ 0. erefore�
f

g

�0

.x/ D
f 0.x/g.x/ � f .x/g0.x/

.g.x//2
.

Proof .:.
Note that f =g D f �

1
g
. By the product rule from Differentiation Rules (1 • 2),�

f

g

�0

.x/ D f 0.x/ �
1

g.x/
C f .x/ �

d
dx

1

g.x/
.

By the power rule, d
dx

1
x

D
d

dx
x�1 D �x�2 D

�1
x2 . So by the chain rule from Differentiation Rules (1 • 2),

d
dx

1
g.x/

D
�1

.g.x//2 g0.x/. Hence we have�
f

g

�0

.x/ D
f 0.x/

g.x/
C

f .x/ � .�g0.x//

.g.x//2
D

f 0.x/g.x/ � f .x/ � g0.x/

.g.x//2
a

In addition to those rules, we also have some hard to evaluate derivatives.

1 • 4. Result (Special Derivatives)

• (Differentiation of exponentials) d
dx

ex D ex .
• (Differentiation of logarithms) d

dx
ln.x/ D

1
x
.

• (Differentiation of trigonometric functions) d
dx

sin x D cos x, and d
dx

cos x D � sin x (note the minus sign).

e proofs of these derivatives can be found in the book, and mostly revolve around whatever formal definition we
choose for things like e and the trigonometric functions. Ultimately, they are not especially interesting, but they are
widely used. Importantly, this allows us to evaluate the derivative of other, similar functions.

1 • 5. Corollary

• d
dx

tan x D sec2.x/ D
1

cos2.x/
.

• d
dx

2x D ln.2/2x . In general, Ax D ln.A/ � Ax for any A > 0.
• d

dx
6x D 6. In general, d

dx
Ax D A for any A, matching up with the idea of the derivative being a slope.

Proof .:.
Note that tan x D sin.x/= cos.x/ so that by e Quotient Rule (1 • 3) or Differentiation Rules (1 • 2),

d
dx

tan x D cos.x/ �
1

cos.x/
� sin.x/ �

1

cos2.x/
� .� sin x/ D

cos2.x/ C sin2.x/

cos2.x/
D

1

cos2.x/
.

An easier derivative, note that 2x D eln.2/�x So by the chain rule and Special Derivatives (1 • 4),
d

dx
eln.2/�x

D eln.2/�x
� ln.2/ D ln.2/ � 2x .

And the easiest of the three, note that as a constant, d
dx

6x D 6 �
d

dx
x D 6 � 1 � x0 D 6 � 1 � 1 D 6. a

Ultimately, using Differentiation Rules (1 • 2) and Special Derivatives (1 • 4) allows one tomechanically, without think-
ing, evaluate just about every derivative that will be thrown at you, just by applying the rules according to how the
defined function was built up.
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Section 2. Exercises

Exercise 1

Evaluate d
dx

cot.x/.

Solution .:.
cot.x/ D

1
tan.x/

. We know d
dx

tan.x/ D
1

cos2.x/
by Corollary 1 • 5 so that by the chain rule,

d
dx

cot.x/ D
�1

tan2.x/
�

1

cos2.x/
D

� cos2.x/

sin2.x/
�

1

cos2.x/
D

�1

sin2.x/
D � csc2.x/.

Exercise 2

Evaluate d
dx

.x2 � 5x C 6/ using the product rule and using the power rule.

Solution .:.
Using the power rule, the derivative is 2x � 5 � x0 D 2x � 5. Using the product rule, note that x2 � 5x C 6 D

.x � 3/.x � 2/ so that
d

dx
.x � 3/.x � 2/ D 1 � .x � 2/ C .x � 3/ � 1 D 2x � 5.

Exercise 3

Evaluate d
dx

sin.ex/.

Solution .:.
Using the chain rule and Special Derivatives (1 • 4), the derivative is cos.ex/ � ex .

Exercise 4

Evaluate d
dx

5x .

Solution .:.
Note that 5x D eln.5/�x so differentiation yields ln.5/ � eln.5/�x D ln.5/ � 5x .

Exercise 5
For what x does f 0.x/ D 0? Here, f .x/ D x3 � 6x2 � 15x C 9.

Solution .:.
Note that f 0.x/ D 3x2 � 12x � 15 D 3.x2 � 4x � 5/ D 3.x � 5/.x C 1/. Hence f 0.x/ D 0 iff x D 5 or
x D �1. a

Exercise 6
Write f .x/ D ln.sin x/. Compute f 0.x/.

Solution .:.
By the chain rule, and Special Derivatives (1 • 4), f 0.x/ D

1
sin x

� cos.x/ D cot x.

Exercise 7
Write f .x/ D ln.ex/. Using the chain rule, show f 0.x/ D 1 (obviously f .x/ D x implies this).

Proof .:.
d

dx
ln.x/ D

1
x
. d

dx
ex D ex so that f 0.x/ D

1
ex � ex D 1.
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